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  [摘 要] 目的 旨在利用DNA甲基化特征构建机器学习模型来预测肿瘤患者放射治疗(RT)反应。方

法 通过整合分析10种癌症类型、843例患者的全基因组DNA甲基化和RT疗效数据,鉴定了与放射的敏感

性显著相关的差异甲基化位点(DMSs)。基于这些特征性DMSs开发了机器学习分类器模型。结果 基于多

个
 

CpG
 

位点甲基化信号构建的机器学习分类器,在区分放射敏感与抗性患者方面(AUC=0.889~1.000)显著优

于单一差异甲基化位点(DMS)(AUC=0.594~0.956,P<0.001)。该模型也可预测患者总生存期。结论 基于

DNA甲基化组特征的机器学习模型在预测RT疗效和预后方面有临床应用价值。
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[Abstract] Objective To

 

construct
 

a
 

machine
 

learning
 

model
 

using
 

DNA
 

methylation
 

features
  

to
 

pre-
dict

 

radiotherapy(RT)
 

response
 

in
 

cancer
 

patients.Methods By
 

integrating
 

and
 

analyzing
 

10
 

types
 

of
 

cancer
 

and
 

whole-genome
 

DNA
 

methylation
 

data
 

alongside
 

RT
 

efficacy
 

data
 

from
 

843
 

patients,differentially
 

methyla-
ted

 

sites(DMSs)
 

significantly
 

associated
 

with
 

radio
 

sensitivity
 

were
 

identified.Machine
 

learning
 

classifier
 

models
 

were
 

developed
 

based
 

on
 

these
 

characteristic
 

DMSs.Results The
 

machine
 

learning
 

classifier
 

construc-
ted

 

based
 

on
 

methylation
 

signals
 

from
 

multiple
 

CpG
 

sites(AUC=0.889-1.000)
 

was
 

significantly
 

superior
 

to
 

a
 

single
 

DMS(AUC=0.594-0.956,P<0.001)
 

in
 

distinguishing
 

between
 

radio-sensitive
 

and
 

radio-resistant
 

patients.The
 

model
 

could
 

also
 

accurately
 

predict
 

the
 

overall
 

survival
 

period
 

of
 

patients.Conclusion The
 

ma-
chine

 

learning
 

model
 

based
 

on
 

DNA
 

methylome
 

features
 

has
 

clinical
 

application
 

value
 

in
 

predicting
 

the
 

efficacy
 

and
 

prognosis
 

of
 

RT.
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  放射治疗(RT)在多种恶性肿瘤治疗中发挥着关

键作用,既能实现局部控制,在某些病例中甚至能达

到治愈效果[1]。然而,尽管疗效显著,患者对 RT的

敏感性存在显著的个体差异[2]。这种放射敏感性的

个体差异促使研究者们致力于寻找能够指导个体化

治疗、优化临床疗效的预测性生物标志物[2]。
目前已有多种方法用于预测放射敏感性,包括基

因表达谱分析和基因组突变检测[3-4]。DNA损伤修

复(DDR)基因[如共济失调毛细血管扩张症突变

(ATM)和BRCA1/2]的突变已被用作个体化治疗策
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略的预测标志物。然而,由于可用突变数量有限,其
广泛应用受到制约。基于RNA检测的基因表达特征

也被开发用于预测RT反应,但这些方法存在数据解

读复杂、可重复性不足、检测方法缺乏标准化及临床

应用受限等缺陷[3-4]。
放射敏感性的个体差异部分源于肿瘤细胞基因

表达模式的差异。DNA甲基化作为重要的表观遗传

修饰,可通过调控基因表达影响细胞对辐射的反应。
研究表明,特定基因启动子区的甲基化状态可作为

RT反应的预测因子和预后指标[3],这些基因主要涉

及DNA损伤修复、细胞周期和凋亡等过程。例如,
ATM基因编码的高分子量蛋白激酶在细胞基因组损

伤应答中起关键作用。KIM 等[5]研究发现 HCT-116
细胞较LoVo和RKO细胞系表现出更高的放射敏感

性,这种差异可能与ATM 基因启动子区的异常甲基

化有关。ROY等[6]在神经胶质瘤细胞系中也观察到

类似现象。
与基因表达谱(如RNA检测)相比,DNA甲基化

作为RT反应预测标志物具有显著优势。首先,甲基

化CpG位点在基因组中广泛分布,可提供大量候选

标志位点;其次,DNA甲基化标志稳定性高,适用于

福尔马林固定石蜡包埋(FFPE)样本检测;此外,基于

循环肿瘤DNA(ctDNA)的液体活检可保留来源肿瘤

的表观遗传特征,为无创预测RT反应提供可能。
既往研究多采用癌细胞系作为DNA甲基化与放

射敏感性研究的模型。然而肿瘤组织中的放射反应

机制可能比细胞系更为复杂。单个基因的甲基化状

态往往不足以准确预测RT反应,因此基于临床肿瘤

样本DNA甲基化状态与RT反应分析获得的生物标

志物可能更具临床转化价值。高通量DNA分析技术

(如微阵列和高通量测序)的发展为肿瘤甲基化组研

究提供了强大工具。本研究基于TCGA数据库,通过

对接受RT治疗的大规模患者群体进行DNA甲基化组

综合分析,鉴定出大量差异甲基化位点(DMSs),并采用

机器学习算法构建最优DMSs组合分类器。这些分类

器不仅能显著提高放射敏感性预测效能,还可用于患者

生存率预测,为肿瘤精准放疗提供新的决策依据。
1 材料与方法

1.1 样本选择 从 UCSC
 

XENA-GDC
 

TCGA数据

库(https://xenabrowser.net/hub/)下载了10种癌

症类型的450K
 

DNA甲基化数据及临床数据。根据

临床资料中的RT反应信息,将样本分为RT敏感组

(S组,完全/部分缓解)和RT抵抗组(R组,疾病进

展)。最终纳入843例样本,其中S组586例,R组

257例。
1.2 DNA甲基化数据预处理 采用R语言ChAMP
包[7]对原始数据进行质控:(1)剔除低质量样本及探

针;(2)使用β值表示甲基化水平(0~1范围);(3)通
过BMIQ算法校正技术批次效应;(4)采用P 值过滤

(P>0.01)剔除信号不可靠位点。
1.3 基于甲基化组的层次化分析 按癌种分层后,
使用ChAMP包进行差异甲基化分析:(1)计算S组

与R组间甲基化水平差异(t检验);(2)设定筛选阈

值:P<0.05且|log2FC|>0.1;(3)通过Benjamini-
Hochberg法校正多重假设检验。可视化分析采用

pheatmap包绘制热图展示差异甲基化模式;使用

pROC包生成受试者操作特征(ROC)曲线和PRROC
包生成精确率-召回率(PRC)曲线评估预测效能[7-8]。
1.4 机器学习分类器构建 采用分层抽样将数据按

4∶1比例随机划分为训练集(674例)与测试集(169
例);通过LASSO回归(glmnet包实现)在训练集上

进行特征选择。采用5折交叉验证(在训练集内部执

行)确定最优正则化参数λ;选择交叉验证AUC最大

值对应λ值。逻辑回归模型构建:Y=W1·cg1
 +

 

W2

·cg2
 +……+Wn·cgn+b,其中W 为权重系数,cg

为DMS甲基化水平,b 为截距项,输出值Y>0.5判

定为敏感组。
1.5 预测结果可视化 使用ggplot2绘制预测评分

分布图;通过survival包进行生存分析。按预测评分

中位数分组;使用Kaplan-Meier法绘制生存曲线;使
用Log-rank检验评估组间差异。
1.6 功能富集分析 将前500个基因注释DMS输

入 Metascape平 台(https://metascape.org/gp/in-
dex.html),进行GO/KEGG通路富集分析。
2 结  果

2.1 患者临床特征分析 本研究基于TCGA公共数

据库,对843例接受RT的癌症患者(S组586例,R
组257例)开展甲基化水平与放射敏感性关联分析。
样本涵 盖10种 癌 症 类 型,包 括 膀 胱 尿 路 上 皮 癌

(BLCA,24例)、宫颈鳞癌(CESC,117例)、食管癌

(ESCA,41例)、头颈鳞癌(HNSC,267例)、脑低级别

胶质瘤(LGG,170例)、肺腺癌(LUAD,46例)、肺鳞

癌(LUSC,34 例)、胰 腺 癌 (PAAD,37 例)、肉 瘤

(SARC,69例)和皮肤黑色素瘤(SKCM,38例)。图1
展示了不同癌种样本的分组情况。

  注:根据患者对放疗的临床反应,将癌症样本分为放疗敏感组(蓝
色)和放疗抵抗组(红色)。本分析共纳入 TCGA数据库中10种不同

类型癌症的843例肿瘤样本。

图1  癌种分布及分组统计图

·7052·现代医药卫生2025年11月第41卷第11期 J
 

Mod
 

Med
 

Health,November
 

2025,Vol.41,No.11



2.2 S组与R组差异甲基化位点(DMSs)鉴定 为

鉴定不同癌症类型中与放射敏感性相关的甲基化位

点,比较了S组和R组样本的DMSs甲基化水平。通

过p值筛选,各癌症类型中显著差异的 DMSs被鉴

定。特别 值 得 注 意 的 是,这 些top
 

50
 

DMSs包 含

TERT、STAT5A、RAD51L1、PRKDC、PPP1R2P1、
MBD3、KDM4B、IL1B、IL12B、BRCA2和ARID1A等

基因,这些基因在既往研究中已被证实与甲基化状态

相关。无监督聚类分析显示,在10种癌症类型中,大
多数癌种的两种应答组间甲基化模式存在显著差异。
如图2所示,在 BLCA、ESCA、LGG、LUAD、LUSC
和PAAD肿瘤样本中观察到明显的组间区分能力。
以BLCA肿瘤样本为例(图2),在其top

 

50
 

DMSs中,
有26个位点在S组样本中表现出比R组样本更高的

甲基化水平趋势,表明这些位点甲基化水平升高可能

与放射敏感性存在关联。进一步评估这10种癌症类

型中DMSs对S组和R组样本的区分效能,对于样本

量相 对 平 衡 的 癌 种(BLCA、ESCA、LGG、LUAD、
LUSC、PAAD、SARC、SKCM),采用ROC曲线评估

其分层的特异性和灵敏度(图3A~H)。单一DMSs
的曲线下面积(AUC)值为0.59~0.96。其中部分

DMSs展现出较好的区分能力。例如,在BLCA中,
基 因 GJB6 的 cg03568673 位 点 的 AUC 值 达 到

0.956。对于存在明显样本不平衡的CESC和 HNSC
癌种(灵敏度分别为84.6%和90.3%,一方样本比例

低于20%),额外采用PRC进行评估(图3I、J)。在这

两个癌种中表现最佳的单个DMSs,其PRC曲线下面

积(AUPRC)值分别高达
 

0.96和0.97。需要指出的

是,部分癌种(如 BLCA、LUAD)样本量较少(n<
50),其单个DMS的ROC

 

AUC值/精确率-召回率曲

线下的面积(AUPRC)值可能存在较大波动。尽管如

此,多个位点展现出稳定的高区分效能,表明这些甲

基化标记物具有作为放射敏感性预测生物标志物的

潜力。

  注:横轴代表患者样本,纵轴代表DMSs位点。颜色从蓝色到红色表示从低甲基化到高甲基化的变化趋势。样本分类标注于每张热图顶部,
其中蓝色代表放疗敏感组,红色代表放疗抵抗组。

图2  不同肿瘤类型DMSs热图

2.3 DMSs功能富集分析 为探究这些DMSs是否

与特定基因功能相关,分析了DMSs在基因组中的分

布特征。结果显示,这些DMSs主要分布于启动子区

(16%~30%)、基因间区(26%~32%)和基因体区

(31%~45%)。这表明大多数DMSs定位于基因的

启动子区和基因体区域。其中,启动子区作为基因转

录起始区域,其DMSs的分布可能对基因表达具有重

要调控作用;基因间区可能包含远程调控元件;而基

因体区覆盖基因的编码区和内含子区,该区域的

DMSs可能与基因调控相关。通过解析这些区域

DMSs的功能及调控机制,可深化对肿瘤放射敏感性

分子机制的理解。进一步研究中,选择最具代表性的

前500个 DMSs(top500
 

DMSs)进行功能富集分析

(图4)。结果显示,这些DMSs显著富集的通路与癌

症进展密切相关,主要包括:DDR通路、炎症反应调控

通路以及 Wnt信号通路负调控通路。具体而言:在
LGG中,发现这些基因显著富集于 Wnt信号通路负

调控和炎症反应调控通路。Wnt信号通路在肿瘤发
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生发展中起关键作用,参与细胞增殖、分化及干细胞

自我更新等过程。已有研究证实 Wnt信号通路与肿

瘤放射敏感性存在关联[9]。此外,炎症反应在肿瘤侵

袭转移过程中也具有重要作用[10]。在LUAD中,鉴
定出DMSs相关基因主要与 DDR通路相关。DDR
是细胞修复DNA损伤的关键过程[11]。本研究表明,

LUAD患者肿瘤细胞中DDR通路可能存在异常激活

或调控,这可能会影响肿瘤的发展进程和治疗敏感

性。通过功能富集分析,揭示了DMSs相关基因的富

集通路与肿瘤细胞对RT的应答状态存在显著相关

性。这些发现为理解甲基化在肿瘤细胞放射敏感性

和抵抗性中的作用提供了重要线索。

  注:A~H 样本量相对平衡的8种癌症类型(BLCA、ESCA、LGG、LUAD、LUSC、PAAD、SARC、SKCM)中,具有最高ROC
 

AUC值的单个

DMS的ROC曲线。I~J样本量不平衡的2种癌症类型(CESC、HNSC)中,具有最高区分效能的单个DMS的PRC图[以 AUPRC,即平均精度

(AP)评估]。括号中的数字为95%的置信区间(CI)。

图3  单个差异甲基化位点(DMSs)对放疗敏感组与放疗抵抗组的区分效能评估

  注:A为LGG;B为LUAD。按P 值显著性排序。

图4  DMSs相关基因功能富集分析
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2.4 已报道RT反应相关基因甲基化性能评估 本

研究同时评估了既往研究中多个与RT反应预测相

关的甲基化标志基因的性能。这些基因包括涉及

DNA损伤修复的关键因子 ATM[12],NER相关基因

ERCC1[13-14],DNA 损 伤 修 复 检 查 相 关 基 因

RASSF1A
 [15-16],促进肿瘤细胞增殖、侵袭、迁移和上

皮-间质转化的相关基因SERPINB5[17-18],参与增殖

和血管生成的转录抑制因子 HIC1基因[19],端粒酶

hTERT基因[20],参与维持基因组稳定性的FHIT基

因[21-22]及肿瘤细胞增殖相关的TM4SF4基因[23]。基

于TCGA数据库,本研究分析了这些基因甲基化水平

与患者RT结局的相关性(图5)。结果显示ERCC1
基因(CESC,P=0.004

 

8)和ATM 基因(SARC,P=
0.011

 

0)在S组样本中启动子区甲基化水平升高;而

RASSF1基因(SKCM,P=0.014
 

0)、FHIT(SARC,

P=0.006
 

2)、HIC1(SKCM,P=0.050
 

0)、TM4SF
(ESCA,P=0.020

 

0)、SERPINB5(SKCM,P=0.005
 

5)和TERT(PAAD,P=0.190
 

0)等基因在R组样本

中甲基化水平升高(图5)。这些发现与先前研究结果

相符。

  为深入评估这些已报道与RT反应相关基因的

甲基化位点对S与 R 组样本的区分能力,进行了

ROC/PRC分析。如图6A~G所示,在采用ROC评

估的癌种中,AUC值为0.595~0.761;在采用PRC
评估的CESC中(图6H),其最佳基因位点的平均精

度(AP)值达到0.927。这些结果表明,尽管存在个别

表现优异的基因位点,但多数基因位点对RT反应的

预测特异性处于中等水平。

  注:采用t检验比较两组间基因启动子区甲基化水平。蓝色柱状图代表放疗敏感组,红色柱状图代表放疗抵抗组。各组比较均标注相应P 值。

图5  放疗敏感组与放疗抵抗组间差异基因甲基化水平比较

2.5 机器学习分类器的构建与验证 首先通过

ROC曲线评估单个DMS对S组和R组样本的区分

能力,结果显示这些 DMS的 AUC值介于0.594~
0.956,已报道的RT反应相关基因DMS的 AUC值

介于0.595~0.761。为提高RT反应预测的特异性,
采用机器学习方法构建了逻辑回归分类器。在构建

放射敏感性预测分类器时,通过最优 AUC值筛选最

具预测价值的特征变量进行 LASSO 回归分析(图

7)。将具有非零 LASSO 系数的 DMS整合成位点

集。最终基于材料与方法部分描述的公式计算预测

评分(图8)。如图8所示,该分类器能有效区分绝大

多数S组与R组样本。在独立测试集上,通过多维度

指标评估模型性能:在样本平衡癌种ROC评估体系

中,分类器 AUC值显著超越单点预测(图9A~D)。
例如 LGG 分 类 器 AUC 达 0.889(vs.单 点 最 高

0.754,DeLong检验P=
 

1.2×10-5)。在样本不平

衡癌种PRC评估体系中(图9E~F),AP值展现卓越

稳定性,例如CESC分类器测试集实现完美预测(AP
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为1.000),HNSC分类器(AP为0.995)。整合多维

甲基化特征构建的分类器,其性能显著超越最优单点

标志物,证实多特征整合可突破单标志物的预测瓶

颈。该模型为个体化放疗决策提供了高精度分子

工具。

  注:展示了在不同癌症类型中,通过ROC(A~G)或PRC(H)评估的、已报道与RT反应相关的特定基因甲基化位点对S组与R组的区分能

力,多数基因表现出中等程度的特异性。括号中的数字为95%的置信区间(CI)。

图6  评估已报道RT反应相关基因甲基化位点的区分效能

  注:AUC值随log(λ)的变化趋势,垂直虚线标示最优λ值位置。

图7  LASSO回归模型中最优λ值选择曲线
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  注:红色圆点代表放疗抵抗组(R组)样本,蓝色圆点代表放疗敏感组(S组)样本,虚线表示分类阈值。如图所示,绝大多数R组样本集中在阈

值下方,而S组样本主要分布在阈值上方。

图8  分类器区分S组与R组样本的性能表现

  注:A~D为样本平衡癌种中训练和测试集的ROC曲线;
 

E~F为样本不平衡癌种中训练和测试集的PRC曲线;图中展示该模型的预测性能

表现;括号中的数字为95%的置信区间(CI)。

图9  基于多特征整合的逻辑回归分类器预测性能

2.6 基于机器学习分类器的患者生存预后分层 为

评估分类器的预后价值,以预测评分作为分组标准进

行总生存期(OS)分析。根据预测评分将患者分为高

分组和低分组,通过log-rank检验和Kaplan-Meier生

存曲线分析预测评分与生存期的相关性。结果显示,
在多种癌症类型中,不同预测评分组间的 OS存在显

著差异。如图10所示,高分组的生存优势在以下癌

种中差异有统计学意义。例如,宫颈癌(CESC,P<
0.000

 

1)、头颈鳞癌(HNSC,P=0.000
 

2)、脑低级别

胶质瘤(LGG,P<0.000
 

1)、肺腺癌(LUAD,P=
0.020

 

0)、肺 鳞 癌 (LUSC,P =0.006
 

5)及 肉 瘤

(SARC,P=0.006
 

5)。这表明预测评分较高的患者

·2152· 现代医药卫生2025年11月第41卷第11期 J
 

Mod
 

Med
 

Health,November
 

2025,Vol.41,No.11



多数对放疗敏感,且具有更好的生存预后。

  注:图中高分/低分组分别对应高/低预测评分患者;较高评分预示放射敏感性倾向,而较低评分提示放射抵抗趋势;经log-rank检验证实高预

测指数组患者的总生存期显著更优。

图10  基于预测评分的OS曲线分层分析

3 讨  论

  RT是癌症治疗的重要手段之一,而肿瘤放射抵

抗是导致RT失败的主要原因。能够预测患者治疗

反应的生物标志物对于制定个体化RT策略具有重

要价值。临床医生若能预先评估肿瘤放射敏感性,将
有助于制定更精准的治疗方案,从而提高疗效、减少

不必要的副作用并优化医疗资源配置。

DNA甲基化作为表观遗传修饰,可在不改变

DNA序列的情况下调控基因表达,与癌症发生发展

密切相关[24]。研究表明,DNA甲基化在放射敏感性

调控中起关键作用,其模式改变可能通过影响DNA
修复、细 胞 周 期 调 控 和 凋 亡 等 辐 射 应 答 相 关 通

路[25-26],进而调控肿瘤细胞对 RT的敏感性。KIM
等[27]在非小细胞肺癌放射抵抗细胞中发现747个高

甲基化基因和344个低甲基化基因,揭示了敏感与抵

抗细胞间显著的甲基化组差异。DNA修复相关基因

(如胶质母细胞瘤中 MGMT启动子高甲基化和食管

癌中RUNX3基因高甲基化[28])的甲基化状态可显著

影响细胞放射敏感性,表明DNA甲基化模式有望成

为预测肿瘤放射敏感性的分子标志物。
为系统研究DNA甲基化预测RT反应的临床价

值,分析了10种肿瘤的全基因组甲基化数据,鉴定了

S组与R组间的DMSs。虽然多数DMSs仅具有中等

预测特异性(AUC
 

0.6~0.8),但在特定癌种中发现

部分高特异性位点:BLCA 中 GJB6基因(AUC=
0.956)、ESCA中LAT基因(AUC=0.929)和SKCM
中PRKAG2基因(AUC=0.889)的DMSs表现出优

异预测效能。通过分析TCGA临床样本中已报道的

RT反应相关基因(涉及 DNA 修复、细胞增殖等通

路),发现其预测能力仅达中等水平(AUC
 

0.595~
0.761)。这可能源于既往研究多基于肿瘤细胞系,而
采用TCGA临床样本进行全基因组无偏倚分析更能

准确反映肿瘤细胞的放射敏感性特征。
为进一步提升预测性能,采用机器学习算法构建

癌种特异性组合模型,通过整合多个DMSs的特征实

现模型优化。结果显示,测试集中样本平衡的癌种组

合模型AUC值均超过0.8,样本不平衡癌种CESC、

HNSC预测模型AP>0.95。这种多特征交互考量策

略显著提高了辐射反应预测的准确性。值得注意的

是,这些机器学习模型不仅能预测RT敏感性,还可

评估患者预后。预测评分高低分组在 CESC(P<
0.001)和LGG(P<0.001)等癌种中均显示出显著生

存差异,凸显了模型在生存结局预测中的潜力。DNA
甲基化标志物具有稳定性高的独特优势,且适用于

FFPE样本和液体活检。与RNA标志物相比,DNA
甲基化分析更易于临床转化应用。本研究证实了

DNA甲基化组模式作为肿瘤放射敏感性预测标志物

的潜力,为评估放疗反应提供了稳定、非侵入性的新
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方法。
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