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[ Abstract| This article reviewed the mechanism of action of mechanical stimulation in bone growth,that
is,external mechanical stimulation was converted into intracellular biochemical signals through mechanorecep-
tors on the cell membrane, triggering cascade reactions to regulate gene expression and protein synthesis,
thereby promoting the proliferation and differentiation of osteoblasts and increasing the synthesis and mineral-
ization of bone matrix. Additionally, the article discussed the clinical applications of mechanical stimulation
and future research directions. This article provided important insights into the understanding of the mechani-

cal adaptability of bone tissue,with potential implications for developing therapeutic strategies in orthopedics.
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