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小胶质细胞吞噬作用在帕金森病中的致病机制研究进展
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  [摘 要] 帕金森病(PD)是全球第二大神经退行性疾病,其主要病理特征是中脑黑质多巴胺能神经元变性

和死亡,以及路易小体的形成。小胶质细胞作为中枢神经系统的固有免疫细胞,通过吞噬功能在维持神经系统稳

态中发挥着重要作用。然而,过度或异常的吞噬活动可能导致神经元的丢失,加剧疾病进程。该文探讨了小胶质

细胞吞噬作用在PD中的致病机制,以及相关的信号通路和分子机制,以期为PD的治疗策略提供新的思路。
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[Abstract] Parkinson's

 

disease
 

(PD)
 

is
 

the
 

second
 

most
 

common
 

neurodegenerative
 

disorder
 

world-
wide,characterized

 

by
 

the
 

degeneration
 

and
 

death
 

of
 

dopaminergic
 

neurons
 

in
 

the
 

substantia
 

nigra
 

of
 

the
 

mid-
brain,as

 

well
 

as
 

the
 

formation
 

of
 

Lewy
 

bodies.Microglia,as
 

innate
 

immune
 

cells
 

of
 

the
 

central
 

nervous
 

sys-
tem,play

 

a
 

crucial
 

role
 

in
 

maintaining
 

neural
 

homeostasis
 

through
 

their
 

phagocytic
 

function.However,exces-
sive

 

or
 

abnormal
 

phagocytic
 

activity
 

may
 

lead
 

to
 

neuronal
 

loss
 

and
 

exacerbate
 

disease
 

progression.This
 

article
 

explored
 

the
 

pathogenic
 

mechanisms
 

of
 

microglial
 

phagocytosis
 

in
 

PD,as
 

well
 

as
 

the
 

associated
 

signaling
 

path-
ways

 

and
 

molecular
 

mechanisms,with
 

a
 

view
 

to
 

providing
 

new
 

ideas
 

for
 

the
 

therapeutic
 

strategy
 

of
 

PD.
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  帕金森病(PD)是世界上最常见的神经退行性疾

病之一,全球范围内PD患病率正在上升,超出了人口

老龄化的影响[1],2015年进行的一项全国性研究对

24
 

117名60岁及以上的参与者进行了调查,结果显

示,60岁以上人群PD患病率为1.37%,而中国PD
患者总数可能高达362万[2]。PD的关键病理特征是

黑质和纹状体中多巴胺能神经元的缺失,而另一病理

特征为路易氏病理,即剩余存活多巴胺能神经元中形

成的主要含有α-突触核蛋白(α-syn)的嗜酸性包涵体,
也称为路易小体[3]。PD患者的临床表现以运动症状为

特征,包括静息性震颤、肌肉强直、运动迟缓和姿势不稳

定,此外,在疾病早期可能还表现为便秘、嗅觉缺失、睡
眠障碍、抑郁、神经/精神疾病等一系列非运动症状[4]。
PD病因主要分为2个方面,一方面为环境因素,

包括接触杀虫剂等毒物、缺乏运动、头部受伤和压力

等情况;另一方面则为遗传因素,目前,有研究发现,
与PD相关的基因包括α-突触核蛋白基因(SNCA)、
富含亮氨酸重复激酶2基因、葡萄糖脑苷脂酶基因、
帕金蛋白基因、PTEN诱导激酶1基因等[3]。其发病

机制包括α-syn聚集、氧化应激、线粒体功能障碍、铁
死亡、神经炎症等[5]。

小胶质细胞是中枢神经系统(CNS)的巨噬细胞,
在CNS中起主要的免疫防御作用。生理作用下小胶

质细胞在神经发生过程中清除过量产生的突触[6]。
近年来,有研究发现,小胶质细胞受刺激后可转化为

活跃的吞噬性小胶质细胞[7],通过吞噬错误折叠的蛋

白质、细胞碎片和垂死细胞以维持体内平衡,但当其

吞噬过度或过弱时又将引起一系列病理改变。吞噬

是小胶质细胞发挥功能的主要手段,调节小胶质细胞

吞噬功能将影响CNS生理及病理过程的进展,甚至

相互转化,既往大量研究证明,其吞噬清除功能失衡

与多种神经退行性病变相关,包括阿尔 茨 海 默 病

(AD)、PD、精神分裂症、多发性硬化症、Nasu-Hakola
病、自闭症谱系障碍、缺血性脑卒中等[8]。
PD病理性聚集的α-syn是调节小胶质细胞激活

的关键,过度激活的小胶质细胞通过多种信号分子或

受体介导其对多巴胺能神经元的吞噬,并进一步损伤

神经元。目前的观点多支持小胶质细胞过度激活可
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能是PD病理过程中的重要致病机制。但在PD中小

胶质细胞吞噬功能的利弊尚不明晰。关于小胶质细

胞在PD不同阶段的作用及其分子机制的研究仍存在

争议。因此,深入探究小胶质细胞吞噬调节在PD中

的具体作用对理解疾病机制和寻找治疗策略至关重

要。现将从PD的病理特征出发探讨小胶质细胞吞噬

作用在PD中的致病机制,以及相关的信号通路和分

子机制,以期为PD的治疗策略提供新的思路。
1 PD病理特征

  PD的关键病理特征是中脑黑质内多巴胺能神经

元的缺失。早在1960年,EHRINGER等[9]首次发现

了PD患者黑质和纹状体区域多巴胺水平明显降低。
进一步研究发现,PD中脑黑质受影响最严重的区域通

常是腹外侧层,其中包含投射到纹状体背壳核的神经

元[10],这种病理通常与PD患者的临床特征一致[11]。
PD的另一个特征是路易氏病理及路易体形成。

路易体是由α-syn聚集体组成的神经元内包涵体。在

错误折叠状态下α-syn变得不溶并聚集在神经元的细

胞体和突内,形成细胞内包涵体[12]。α-syn作为PD
病理特征的同时还是其重要的致病及进展因素。有

研究发现,编码α-syn的SNCA 基因突变是家族性

PD的重要病因[13]。α-syn在特定易感神经元内异常

聚集并传播,也是散发性PD发生和进展的关键机

制[14]。在更微观的层面,有研究发现,α-syn在PD中

通过异常聚集和后翻译修饰干扰神经元的关键功能,
包括突触传递、线粒体、溶酶体功能及细胞内物质运

输等,最终导致神经元死亡[15]。α-syn的蓄积还与PD
患者的疾病进展有关,α-syn的致病性聚集体可在PD
中以朊病毒样方式从细胞间传播,体内研究表明,
α-syn可从受影响的区域传播到大脑的其他区域[16]。
近年来,有研究发现,路易氏病理不仅局限于大脑,也
可在脊髓和周围神经系统中被发现,包括迷走神经、
交感神经节、心丛、肠神经系统、唾液腺、肾上腺髓质、
皮神经和坐骨神经,这也提示PD可能是一种多系统

疾病,影响神经系统包括中枢及外周的许多不同

区域[17]。
2 小胶质细胞激活及相关吞噬通路

  小胶质细胞是CNS的巨噬细胞,在CNS中起主

要的免疫防御作用。生理状态下小胶质细胞通过其

吞噬功能参与CNS的发育和功能调节,在突触修剪、
轴突和髓鞘的修饰、响应神经元活动、支持神经发生

和维持神经系统稳态等方面具有关键作用[18],这些功

能对形成精确、高效的神经网络及适应环境变化和促

进组织再生至关重要。
近年来,有研究发现,小胶质细胞受刺激后可转

化为活跃的吞噬性小胶质细胞[7],发挥吞噬清除作

用,吞噬错误折叠的蛋白质、细胞碎片和垂死细胞以

维持体内平衡,但当其吞噬过度或减弱时又将引起一

系列病理改变,影响衰老及多种神经退行性病变的

发展。
小胶质细胞吞噬过程中的关键步骤是识别凋亡

或受损细胞表面暴露的“吃我”信号或“不要吃我”信
号,以确定吞噬目标[8]。下面主要阐述影响小胶质细胞

吞噬的
 

“吃我”与“别吃我”信号类型及相关研究进展。
2.1 “吃我”信号通路 磷脂酰丝氨酸(PtdSer)是最

常见的膜锚定“吃我”信号[19]。PtdSer通常局限于质

膜的内小叶,对神经元没有毒性,然而,在细胞凋亡的

早期暴露PtdSer标志着对神经元的选择性吞噬[20]。
暴露在传导细胞外小叶的PtdSer通过

 

TAM(包括

Tyro3、Axl和 Mer)受体依赖机制触发小胶质细胞吞

噬,同时,抑制磷脂转录酶1活性减少细胞内钙失调,
防止PtdSer外化,并使载体传导的转基因表达细胞

免受小胶质细胞吞噬[21]。钙网蛋白是另一种重要的

膜锚定“吃我”信号,通常定位于内质网,暴露的钙网

蛋白通过与位于小胶质细胞中的低密度脂蛋白受体

相关蛋白结合诱导吞噬,有研究证明了神经元表面暴

露的钙网蛋白是小胶质细胞吞噬神经元所必需的进

食信号,但这仅在特定情况下促进吞噬,并且游离的

钙网蛋白还可通过结合小胶质细胞抑制其吞噬[22]。
调节小胶质细胞吞噬功能的可溶性桥接分子包括乳

脂球表皮生长因子8(MFG-E8)、TAM 受体酪氨酸激

酶、补体1q/3等。MFG-E8可由小胶质细胞和星形

胶质细胞释放,其N端类表皮生长因子(EGF)样结构

域可识别巨噬细胞表达的αvβ3/5
 

整合素受体,C端盘

状结构域可与暴露的PtdSer结合共同影响小胶质细

胞的突触修剪及成年新生神经元的功能成熟[23]。在

疾病研究方面,抑制 MFG-E8的相互作用可挽救星形

胶质细胞和小胶质细胞对AD患者来源突触的吞噬,
而不影响对照突触的摄取,提示AD通过 MFG-E8介

导的吞噬机制促进人类胶质细胞对突触的摄取[24]。
TAM受体酪氨酸激酶包括

 

Tyro3、Axl、Mer这3种

类别[25]。既往研究证明,缺乏小胶质 Mer、Axl的成

年小鼠在CNS的神经源性区域表现出明显的凋亡细

胞积累,并且在成年神经发生过程中产生的凋亡细胞

通常由TAM受体配体生长停滞特异性蛋白6(Gas6)
和蛋白S5驱动被小胶质细胞吞噬[26]。另外,在病理

状态下TAM还参与了AD、PD、感染、组织创伤等疾

病中小胶质细胞的吞噬激活[27-29]。补体1q/3也作为

可溶性桥接信号。在生理状态下小胶质细胞通过补

体系统,尤其是补体3、补体受体3介导发育中的突触

修剪[6]。在多种CNS疾病中,如AD[30]、多发性硬化

症[31]、亨廷顿舞蹈病[32]等补体途径的异常激活均会

导致突触损伤和神经炎症。骨髓细胞上表达的触发

受体2(TREM2)是另一种吞噬受体,在CNS中小胶

质细胞是这种蛋白的唯一表达体[33]。TREM2促进
小胶质细胞吞噬功能活化,帮助清除凋亡细胞、碎片、
淀粉样蛋白等病理物质,其缺失会阻碍小胶质细胞聚

集于淀粉样斑块周围,削弱保护屏障导致神经元损伤

加剧,促进神经退行性疾病的发展[34]。神经元的吞噬

作用可能还受损伤神经元局部释放尿苷二磷酸调节,
有研究表明,尿苷二磷酸/PY2嘌呤受体6信号传导

的抑制能有效阻止微胶质细胞的吞噬活性,从而减轻

·0022· 现代医药卫生2025年9月第41卷第9期 J
 

Mod
 

Med
 

Health,September
 

2025,Vol.41,No.9



神经元死亡[35]。
2.2 “别吃我”信号通路

 

 CD47-SIRPα是现今最常

见及研究最深入的“别吃我”信号,大量研究支持

CD47及受体SIRPα组成的先天免疫信号通路通过防

止小胶质细胞过度吞噬保护突触,在发育中的视网膜-
外侧膝状体系统中,CD47-SIRPα信号作为一种可被

活动调节的分子制动,保护特定的突触输入,防止小

胶质 细 胞 过 度 的 突 触 吞 噬[36]。神 经 髓 鞘 可 通 过

CD47-SIRPα相互作用下调自身的吞噬,将CD47作

为“自我”标志,保护完整的髓鞘和髓鞘形成的细胞免

受活化的小胶质细胞和巨噬细胞的攻击[37]。另有研

究发现,在发育期小鼠视网膜中,神经元SIRPα可限

制小胶质细胞SIRPα与神经元CD47的结合调节小

胶质细胞的吞噬功能,揭示了CD47-SIRPα调控小胶

质细胞吞噬作用的关键作用[38]。除生理功能外,有研

究支持 这 一 信 号 同 样 在 AD[39]、多 发 性 硬 化[40]等

CNS疾病中通过影响小胶质细胞吞噬参与致病。其

他可能介导“不要吃我”信号通路的分子有CD200、纤
溶酶原激活物抑制剂1等[8]。CD200在全身广泛表

达,其受体CD200R仅在脑内小胶质细胞上表达。当

CD200表达减少时CD200R信号降低,导致小胶质细

胞活化,并且在CD200缺陷小鼠中观察到了小胶质细

胞吞噬功能增强,伴随溶酶体活性增加[41]。有研究发

现,纤溶酶原激活物抑制剂1在CNS中通过自分泌

或旁分泌方式调节小胶质细胞的迁移和吞噬功能,并
通过依赖玻连蛋白、Toll样受体2/6的机制抑制小胶

质细胞对葡聚糖颗粒的吞噬活性[42]。
 

3 小胶质细胞吞噬与PD病理的相关性

  PD中α-syn可作为小胶质细胞的活化诱发因素,
而小胶质细胞吞噬活化改变将进一步加重PD病理中

神经元损伤和α-syn聚集;而后小胶质细胞吞噬异常

同样可作为PD病因导致后续一系列病理结果。下面

分别从PD病理和吞噬信号通路的角度逐步探讨小胶

质细胞吞噬与PD病理及发病机制的相关性。
早年有研究在PD患者脑黑质区域活化的小胶质

细胞内发现神经黑色素颗粒,提示小胶质细胞吞噬神

经元[43]。在PD的6羟多巴胺模型中也发现吞噬性

小胶质细胞附着在形态学完整、染色质分布正常的神

经元上,表明小胶质细胞的激活先于多巴胺能神经元

细胞的丢失,发生变性的神经元可能被吞噬性小胶质

细胞过早吞噬[44]。另有研究在多巴胺能特异性神经

毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)PD小

鼠模型中深入分析了小胶质细胞在体内的迁移、侵
袭、吞噬退化神经元的微观解剖学细节,发现小胶质

细胞通过其运动性和吞噬功能参与了神经元的退化

过程[45]。有研究利用原代大鼠神经元/胶质培养物发

现,PD另一经典造模药物鱼藤酮在浓度不足以对神

经元或小胶质细胞产生直接毒性的情况下,其可通过

小胶质细胞吞噬诱导神经元损失,并可通过抑制吞噬

信号传导而减少损伤[46]。针对PD多个模型的研究

均支持小胶质细胞吞噬在PD发病中发挥作用。

在发现其吞噬改变现象后进一步分析其成因,作
为PD特征性病变的α-syn聚集是一个不错的切入

点,早有研究发现,细胞外单体α-syn以剂量/时间依

赖的方式增强小胶质细胞吞噬,同时,α-syn的N端和

NAC区,特别是NAC区可能与α-syn对小胶质细胞

吞噬作用的影响有关,但与单体α-syn比较,聚合

α-syn反 而 可 能 抑 制 小 胶 质 细 胞 的 吞 噬 作 用[47]。
α-syn通过fc-γ-rs介导可直接与小胶质细胞相互作

用,并可内化和运输到自噬体,进一步激活小胶质细

胞[48]。另有研究表明,缺失前列腺素E2受体明显增

强了小胶质细胞对来自路易体病患者的α-syn聚集体

的清除能力,同时,明显减轻了神经毒性小鼠模型中

α-syn聚集的程度,提示小胶质细胞中的前列腺素E2
受体EP2亚型在α-syn的小胶质细胞吞噬清除中发挥

了关键作用[49]。前面概述了PD病理异常蛋白聚集对

小胶质细胞的吞噬激活作用,激活后的小胶质细胞清除

凋亡神经元及聚集的α-syn,这看似是有益的,因其可减

少代谢蓄积及组织炎症。然而,炎症激活的小胶质细胞

似乎可损害其区分凋亡神经元和存活神经元能力,从而

导致炎症期间的异常吞噬,进一步加强神经元的损

伤[50]。由此可见,不管是小胶质细胞吞噬增强或减弱

均是不利的,调控的失衡是病理进展的关键。
另外,还可从小胶质细胞吞噬通路的角度探究其

在PD中的作用,首先在“吃我”信号方面,在鱼藤酮诱

导下的神经元细胞中发现,抑制PY2嘌呤受体6受体

或使用抗PtdSer抗体可抑制小胶质细胞过度吞噬并

防止神经元的损失,揭示了PtdSer通过调节小胶质

细胞吞噬参与PD病理[50]。有研究发现,钙离子-钙
调蛋白-磷酸酶信号通路通过宏吞噬作用影响神经元

对α-syn的摄取,证实了钙调蛋白在PD中的吞噬调

节作用[51]。此外,Tyro3、Axl、TAM吞噬受体的缺失

增加了过表达α-syn
 

A53T 小鼠的存活时间,提示

TAM受体介导的小胶质细胞对神经元细胞体的过度

吞噬促进了神经变性,加速小鼠死亡[27]。补体也参与

了PD中小胶质细胞的吞噬调节,一项针对 MPTP建

立的PD模型小鼠研究证实了PD涉及补体通路的过

度激活,且与小胶质细胞的过度激活和突触功能异常

密切相关[52]。TREM2也与PD相关,有研究表明,
TREM2突变与PD风险相关,TREM2表达在PD中

明显增加,通过动物和细胞实验证明了TREM2可改

善小胶质细胞的吞噬作用和增殖能力,从而影响PD
病理进展[53]。

“别吃我”信号在PD中的研究相对缺乏,在PD
患者和PD实验模型中发现,中脑浸润的调节性T淋

巴细胞能通过跨膜蛋白SIRPα和CD47的相互作用,
直接保护多巴胺能神经元免受1-甲基-4-苯基吡啶损

害及胶质细胞的炎症反应,提示CD47-SIRPα也可能

在PD致病机制中发挥重要作用[54]。CD200R1在PD
的早、晚期均表现为下调,且表达受α-syn直接调

控[55],CD200-CD200R1信号的改变可能影响微胶质

细胞的吞噬功能,参与了PD的病理过程。
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4 小结与展望

  本文探讨了小胶质细胞吞噬作用在PD中的致病

机制,强调了其在神经元损伤和疾病进展中的双重角

色。虽然小胶质细胞通过吞噬功能清除凋亡神经元

和聚集的α-syn在一定程度上有助于减轻神经炎症和

代谢负担,但其过度或异常的吞噬活动却可能加剧神

经元的损伤,导致疾病的进一步恶化。这些现象均提

示,调控小胶质细胞的吞噬活性是理解PD病理进展

的关键。未来的研究应集中于以下几个方面:(1)深
入探讨小胶质细胞吞噬的信号通路及其调控机制,以
识别潜在的治疗靶点。(2)探索如何平衡小胶质细胞

的保护性与破坏性作用,可能为PD的干预提供新的

策略。(3)考虑到小胶质细胞在其他神经退行性疾病

中的作用跨疾病的比较研究也将有助于揭示其普遍

性机制。
总之,小胶质细胞的吞噬作用在PD的发病机制

中扮演着复杂的角色,未来的研究将为开发新的治疗

方法提供重要的理论基础和实践指导。
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